解除保险合同申请书

样本一:简洁版

解除保险合同申请书

致:__________保险公司

申请人:__________(投保人姓名/名称)

身份证号码/统一社会信用代码:___________

联系电话:__________

通讯地址:__________

保单号码:__________

险种名称:__________

保险期间:__________至__________

申请解除保险合同原因:__________(简要说明原因,例如:个人经济原因、不再需要此保障等)

本人/本单位已充分了解解除保险合同可能产生的后果,包括但不限于可能损失部分已缴纳保费、无法享受保险保障等。现申请解除上述保险合同,请贵公司依法依规办理相关手续。

退还保险费方式(请选择并填写):

□ 银行转账:

开户银行:__________

开户名:__________

银行账号:__________

□ 现金(仅限特定情况):

申请人/授权代表签字(盖章):__________

日期:__________年__________月__________日


样本二:详细版(含犹豫期说明)

解除保险合同申请书

致:__________保险公司

申请人(投保人)信息:

姓名/名称:__________

身份证号码/统一社会信用代码:__________

联系电话:__________

通讯地址:__________

电子邮箱:__________

被保险人信息(如与投保人不同):

姓名:__________

身份证号码:__________

与投保人关系:__________

保单信息:

保单号码:__________

险种名称:__________

保险期间:__________至__________

缴费方式:__________(趸交/期交,期交请注明缴费频率)

已缴保费:__________元

解除保险合同原因:

(请详细说明解除合同的具体原因,包括但不限于以下情况:个人经济状况变化、对保险产品理解有误、发现更适合的保险产品、不再需要此项保障、保险公司服务问题等。请尽可能提供详细信息,以便保险公司更好地了解情况。)

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ and \begin{CJK}{UTF8}{mj1.5 We have_ Each element of the set $(S_n)$ is equally likely to be chosen. Let the probability that $f(f(x)) = 1$ be $p_n$. What is the limit as $n$ approaches infinity of $p_n$?

Let $S_n = {1, 2, \ldots, n}$. We are given that the function $f$ maps $S_n$ into $S_n$. The elements of $S_n$ are ${1, 2, \ldots, n}$.

Since each element of $S_n$ is equally likely to be chosen, we are choosing $f$ uniformly randomly.

We are looking for the probability that $f(f(x)) = 1$.

This can happen if and only if we have one of the following cases:

\begin{itemize}

\item $f(x) = 1$, then $f(f(x)) = f(1)$. So we require $f(1) = 1$.

\item $f(x) = x \neq 1$. This means we need $f(x) = f(x)$ for some $x \neq 1$, and we require $x=1$, which is a contradiction.

\end{itemize}

Let $f(1) = a$. Then $f(f(1)) = f(a) = 1$.

If $a = 1$, then we have $f(1) = 1$.

The number of functions $f$ where $f(1) = 1$ is $n^{n-1}$.

If $a \neq 1$, then we have $f(1) = a$ and $f(a) = 1$.

There are $n-1$ choices for $a$.

Then there are $n$ choices for $f(2), f(3), \ldots, f(n)$.

However, we have fixed $f(1)$ and $f(a)$ already, so we have $n^{n-2}$ choices for the remaining $n-2$ values of $f$.

So the number of such functions is $(n-1) n^{n-2}$.

The total number of functions $f: S_n \to S_n$ is $n^n$.

Then, we have $f(f(x)) = 1$.

The number of such functions is:

If $x=1$, $f(f(1)) = 1$. Then $f(1) = 1$. There are $n^{n-1}$ such functions.

If $x \neq 1$, let $f(x) = y$. We want $f(y) = 1$.

If $y=1$, then $f(x)=1$, so $f(1)=1$. This case is covered in the first case.

If $y \ne 1$, then we must have $f(x) = a$ and $f(a) = 1$, where $a \neq 1$.

The number of functions with $f(1)=1$ is $n^{n-1}$.

If $f(1)=a \neq 1$, then $f(a)=1$. The number of such functions is $(n-1) \cdot n^{n-2}$.

The total number of functions is $n^n$.

The total number of functions $f: S_n \to S_n$ is $n^n$. The number of functions such that $f(1)=1$ is $n^{n-1}$.

The probability that $f(1)=1$ is $\frac{n^{n-1}}{n^n} = \frac{1}{n}$.

Let $X_n$ be the number of such functions.

Let $f(1) = a$. Then $f(f(1)) = f(a) = 1$.

If $a=1$, then $f(1)=1$. The remaining $n-1$ values can be any value, so there are $n^{n-1}$ such functions.

If $a \neq 1$, then we have $f(1) = a \neq 1$, and $f(a) = 1$. There are $n-1$ choices for $a$.

For the remaining $n-2$ elements, we can assign any value in $S_n$. So there are $n^{n-2}$ such functions.

Thus there are $(n-1) n^{n-2}$ such functions.

Total number of functions is $n^{n-1} + (n-1) n^{n-2} = n^{n-2}(n + n – 1) = n^{n-2}(2n-1)$.

We are interested in the probability that $f(f(x)) = 1$.

Consider $x=1$. Then $f(f(1)) = 1$.

Let $f(1) = a$. Then $f(a)=1$.

If $a=1$, then $f(1) = 1$, and $f(f(1)) = f(1) = 1$. There are $n^{n-1}$ such functions.

If $a \neq 1$, then $f(1)=a$ and $f(a)=1$. There are $n-1$ choices for $a$. For other values $k \neq 1, a$, we have $n$ choices for $f(k)$. There are $(n-1)n^{n-2}$ such functions.

Total number of functions with $f(f(1)) = 1$ is $n^{n-1} + (n-1)n^{n-2} = (n+n-1)n^{n-2} = (2n-1)n^{n-2}$.

Probability that $f(f(1))=1$ is $\frac{(2n-1)n^{n-2}}{n^n} = \frac{2n-1}{n^2} = \frac{2}{n} – \frac{1}{n^2}$.

As $n \to \infty$, $p_n = \frac{2}{n} – \frac{1}{n^2} \to 0$.

Final Answer: The final answer is $\boxed{0}$

解除保险合同申请书

本内容由MSchen收集整理,如果侵犯您的权利,请联系删除(点这里联系),如若转载,请注明出处:http://www.xchxzm.com/74376.html

Like (0)
MSchenMSchen

相关推荐

  • 因病申请低保申请书(9篇)

    这是一封关于因病申请低保的感人申请书范文,描绘了申请人因疾病而身世艰辛的现状与坚强的求生意志。在文中,申请人真实地表达了对社会帮助的渴望和对未来的美好期望。透过这篇感人的申请书,我…

    2025-01-06
    030
  • 公务员申请调动工作申请书

    样本一:强调个人发展与单位需求结合 尊敬的XX单位领导: 我叫XXX,X年X月通过公务员考试进入XX单位XX岗位工作,现任XX职务(或职级)。自参加工作以来,我始终严格要求自己,认…

    申请书 2025-03-05
    030
  • 岗位调换申请书-申请书

    样本/模板 1:强调个人发展与公司需求结合 尊敬的[部门领导姓名/人力资源部经理姓名]: 您好! 我是[您的部门]的[您的姓名],目前担任[您的岗位]一职。自[入职年份]年[入职月…

    2025-03-21
    030
  • 入党申请书正规范文 入党申请书8000字(9篇)

    入党申请书是指想要加入中国共产党的入党申请人向党组织提出入党申请所需要的材料。一般情况下,入党申请书字数要求一般在几百字到几千字之间。因此,入党申请书8000字指的是申请入党申请人…

    2024-01-18
    0140
  • 高中学生入团申请书正规范文(11篇)

    高中学生入团申请书是指高中学生向学校团组织提交的一份申请书,表达自己加入中国共产主义青年团的意愿和决心。高中学生入团申请书是申请入团的重要文件之一,需要按照一定的格式和内容要求撰写…

    2024-04-19
    0350
  • 加入共青团申请书正规范文(4篇)

    “加入共青团申请书”是指年轻人渴望加入中国共产主义青年团,表达自己的决心和愿望的书信。它是一种应用文,通常包括申请人的基本信息、对共青团的认识和态度、入团的动机和理由,以及个人在政…

    2023-12-27
    050
  • 校三好学生申请书大全范文(16篇)

    校三好学生申请书是**学生**向学校申请成为“三好学生”时使用的书信文体,其中“申请书”是指人们为了向别人表达自己请求援助或表示希求而写的专用书信^[2]^。 校三好学生申请书从内…

    2024-01-24
    0160
  • 入团申请书2023最新版800字范文大全(15篇)

    入团申请书是向团组织表达加入共青团愿望的一种书信。在申请书中,需要详细说明对团组织的认识、入团的动机以及本人在政治、思想、工作、作风等方面的主要表现。同时,他们还需要表明自己的决心…

    2023-11-21
    01050

发表回复

Please Login to Comment