解除保险合同申请书

样本一:简洁版

解除保险合同申请书

致:__________保险公司

申请人:__________(投保人姓名/名称)

身份证号码/统一社会信用代码:___________

联系电话:__________

通讯地址:__________

保单号码:__________

险种名称:__________

保险期间:__________至__________

申请解除保险合同原因:__________(简要说明原因,例如:个人经济原因、不再需要此保障等)

本人/本单位已充分了解解除保险合同可能产生的后果,包括但不限于可能损失部分已缴纳保费、无法享受保险保障等。现申请解除上述保险合同,请贵公司依法依规办理相关手续。

退还保险费方式(请选择并填写):

□ 银行转账:

开户银行:__________

开户名:__________

银行账号:__________

□ 现金(仅限特定情况):

申请人/授权代表签字(盖章):__________

日期:__________年__________月__________日


样本二:详细版(含犹豫期说明)

解除保险合同申请书

致:__________保险公司

申请人(投保人)信息:

姓名/名称:__________

身份证号码/统一社会信用代码:__________

联系电话:__________

通讯地址:__________

电子邮箱:__________

被保险人信息(如与投保人不同):

姓名:__________

身份证号码:__________

与投保人关系:__________

保单信息:

保单号码:__________

险种名称:__________

保险期间:__________至__________

缴费方式:__________(趸交/期交,期交请注明缴费频率)

已缴保费:__________元

解除保险合同原因:

(请详细说明解除合同的具体原因,包括但不限于以下情况:个人经济状况变化、对保险产品理解有误、发现更适合的保险产品、不再需要此项保障、保险公司服务问题等。请尽可能提供详细信息,以便保险公司更好地了解情况。)

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ and \begin{CJK}{UTF8}{mj1.5 We have_ Each element of the set $(S_n)$ is equally likely to be chosen. Let the probability that $f(f(x)) = 1$ be $p_n$. What is the limit as $n$ approaches infinity of $p_n$?

Let $S_n = {1, 2, \ldots, n}$. We are given that the function $f$ maps $S_n$ into $S_n$. The elements of $S_n$ are ${1, 2, \ldots, n}$.

Since each element of $S_n$ is equally likely to be chosen, we are choosing $f$ uniformly randomly.

We are looking for the probability that $f(f(x)) = 1$.

This can happen if and only if we have one of the following cases:

\begin{itemize}

\item $f(x) = 1$, then $f(f(x)) = f(1)$. So we require $f(1) = 1$.

\item $f(x) = x \neq 1$. This means we need $f(x) = f(x)$ for some $x \neq 1$, and we require $x=1$, which is a contradiction.

\end{itemize}

Let $f(1) = a$. Then $f(f(1)) = f(a) = 1$.

If $a = 1$, then we have $f(1) = 1$.

The number of functions $f$ where $f(1) = 1$ is $n^{n-1}$.

If $a \neq 1$, then we have $f(1) = a$ and $f(a) = 1$.

There are $n-1$ choices for $a$.

Then there are $n$ choices for $f(2), f(3), \ldots, f(n)$.

However, we have fixed $f(1)$ and $f(a)$ already, so we have $n^{n-2}$ choices for the remaining $n-2$ values of $f$.

So the number of such functions is $(n-1) n^{n-2}$.

The total number of functions $f: S_n \to S_n$ is $n^n$.

Then, we have $f(f(x)) = 1$.

The number of such functions is:

If $x=1$, $f(f(1)) = 1$. Then $f(1) = 1$. There are $n^{n-1}$ such functions.

If $x \neq 1$, let $f(x) = y$. We want $f(y) = 1$.

If $y=1$, then $f(x)=1$, so $f(1)=1$. This case is covered in the first case.

If $y \ne 1$, then we must have $f(x) = a$ and $f(a) = 1$, where $a \neq 1$.

The number of functions with $f(1)=1$ is $n^{n-1}$.

If $f(1)=a \neq 1$, then $f(a)=1$. The number of such functions is $(n-1) \cdot n^{n-2}$.

The total number of functions is $n^n$.

The total number of functions $f: S_n \to S_n$ is $n^n$. The number of functions such that $f(1)=1$ is $n^{n-1}$.

The probability that $f(1)=1$ is $\frac{n^{n-1}}{n^n} = \frac{1}{n}$.

Let $X_n$ be the number of such functions.

Let $f(1) = a$. Then $f(f(1)) = f(a) = 1$.

If $a=1$, then $f(1)=1$. The remaining $n-1$ values can be any value, so there are $n^{n-1}$ such functions.

If $a \neq 1$, then we have $f(1) = a \neq 1$, and $f(a) = 1$. There are $n-1$ choices for $a$.

For the remaining $n-2$ elements, we can assign any value in $S_n$. So there are $n^{n-2}$ such functions.

Thus there are $(n-1) n^{n-2}$ such functions.

Total number of functions is $n^{n-1} + (n-1) n^{n-2} = n^{n-2}(n + n – 1) = n^{n-2}(2n-1)$.

We are interested in the probability that $f(f(x)) = 1$.

Consider $x=1$. Then $f(f(1)) = 1$.

Let $f(1) = a$. Then $f(a)=1$.

If $a=1$, then $f(1) = 1$, and $f(f(1)) = f(1) = 1$. There are $n^{n-1}$ such functions.

If $a \neq 1$, then $f(1)=a$ and $f(a)=1$. There are $n-1$ choices for $a$. For other values $k \neq 1, a$, we have $n$ choices for $f(k)$. There are $(n-1)n^{n-2}$ such functions.

Total number of functions with $f(f(1)) = 1$ is $n^{n-1} + (n-1)n^{n-2} = (n+n-1)n^{n-2} = (2n-1)n^{n-2}$.

Probability that $f(f(1))=1$ is $\frac{(2n-1)n^{n-2}}{n^n} = \frac{2n-1}{n^2} = \frac{2}{n} – \frac{1}{n^2}$.

As $n \to \infty$, $p_n = \frac{2}{n} – \frac{1}{n^2} \to 0$.

Final Answer: The final answer is $\boxed{0}$

解除保险合同申请书

本内容由MSchen收集整理,如果侵犯您的权利,请联系删除(点这里联系),如若转载,请注明出处:http://www.xchxzm.com/74376.html

Like (0)
MSchenMSchen

相关推荐

  • 入党申请书部队范文 入党申请书部队(6篇)

    入党申请书部队是指申请加入中国共产党时,所需要提交的申请材料中涉及到的“部队”。具体来说,在部队中申请加入中国共产党,需要提交一份入党申请书,其中需要明确表达自己的入党意愿、对党的…

    2023-12-21
    040
  • 因离家远工作调动申请书

    尊敬的各位领导: 您好! 我叫[您的姓名],是[您的部门]的[您的职位]。自[入职年份]年[入职月份]月入职公司以来,我始终兢兢业业,服从公司各项安排,努力完成本职工作,并积极参与…

    2025-08-05
    0100
  • 改名字申请书(14篇)

    改名字申请书是一个重要的文件,需要清晰准确地表达出改名的原因和意图。一份出色的申请书不仅能够展现出申请人的用心和诚意,还能提高审批成功的几率。在撰写改名字申请书时,应当注重语言流畅…

    2024-09-28
    080
  • 过期食品减轻处罚申请书

    减轻处罚申请书(样本一) 致:[XX市/区]市场监督管理局 申请人:[公司名称/个体工商户名称],统一社会信用代码/营业执照注册号:[XXXXXXXXXXXXXXX],地址:[公司…

    2025-09-07
    050
  • 贫困申请书范本

    范本一:农村家庭贫困申请书 尊敬的村委会、镇民政办: 我叫[申请人姓名],性别[男/女],[民族],[出生年月]出生,现年[年龄]岁,家住[省/市/自治区][县/市/区][乡/镇]…

    2025-03-08
    060
  • 申请拨款的申请书

    样本/模板 1: 尊敬的[拨款机构名称]: 我单位[申请单位名称],现就[项目名称]项目,特向贵单位申请[金额]元人民币的资金支持。 一、项目背景与意义 [详细阐述项目所处的背景环…

    2025-02-20
    0100
  • 支付令异议申请书模板(常用版)

    支付令异议申请书 申请人:[姓名/公司名称],[性别],[民族],[身份证号/统一社会信用代码],[住址/注册地址],[联系电话]。 法定代表人/负责人:[姓名],[职务],[联系…

    2025-06-30
    060
  • 公务员夫妻异地调动申请书

    尊敬的XX市人力资源和社会保障局领导、组织部领导: 申请人:张三,男,汉族,中共党员,身份证号:[身份证号码,如:123456789012345678],现任职于XX省XX市XX单…

    2025-06-21
    0100

发表回复

Please Login to Comment