解除保险合同申请书

样本一:简洁版

解除保险合同申请书

致:__________保险公司

申请人:__________(投保人姓名/名称)

身份证号码/统一社会信用代码:___________

联系电话:__________

通讯地址:__________

保单号码:__________

险种名称:__________

保险期间:__________至__________

申请解除保险合同原因:__________(简要说明原因,例如:个人经济原因、不再需要此保障等)

本人/本单位已充分了解解除保险合同可能产生的后果,包括但不限于可能损失部分已缴纳保费、无法享受保险保障等。现申请解除上述保险合同,请贵公司依法依规办理相关手续。

退还保险费方式(请选择并填写):

□ 银行转账:

开户银行:__________

开户名:__________

银行账号:__________

□ 现金(仅限特定情况):

申请人/授权代表签字(盖章):__________

日期:__________年__________月__________日


样本二:详细版(含犹豫期说明)

解除保险合同申请书

致:__________保险公司

申请人(投保人)信息:

姓名/名称:__________

身份证号码/统一社会信用代码:__________

联系电话:__________

通讯地址:__________

电子邮箱:__________

被保险人信息(如与投保人不同):

姓名:__________

身份证号码:__________

与投保人关系:__________

保单信息:

保单号码:__________

险种名称:__________

保险期间:__________至__________

缴费方式:__________(趸交/期交,期交请注明缴费频率)

已缴保费:__________元

解除保险合同原因:

(请详细说明解除合同的具体原因,包括但不限于以下情况:个人经济状况变化、对保险产品理解有误、发现更适合的保险产品、不再需要此项保障、保险公司服务问题等。请尽可能提供详细信息,以便保险公司更好地了解情况。)

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ and \begin{CJK}{UTF8}{mj1.5 We have_ Each element of the set $(S_n)$ is equally likely to be chosen. Let the probability that $f(f(x)) = 1$ be $p_n$. What is the limit as $n$ approaches infinity of $p_n$?

Let $S_n = {1, 2, \ldots, n}$. We are given that the function $f$ maps $S_n$ into $S_n$. The elements of $S_n$ are ${1, 2, \ldots, n}$.

Since each element of $S_n$ is equally likely to be chosen, we are choosing $f$ uniformly randomly.

We are looking for the probability that $f(f(x)) = 1$.

This can happen if and only if we have one of the following cases:

\begin{itemize}

\item $f(x) = 1$, then $f(f(x)) = f(1)$. So we require $f(1) = 1$.

\item $f(x) = x \neq 1$. This means we need $f(x) = f(x)$ for some $x \neq 1$, and we require $x=1$, which is a contradiction.

\end{itemize}

Let $f(1) = a$. Then $f(f(1)) = f(a) = 1$.

If $a = 1$, then we have $f(1) = 1$.

The number of functions $f$ where $f(1) = 1$ is $n^{n-1}$.

If $a \neq 1$, then we have $f(1) = a$ and $f(a) = 1$.

There are $n-1$ choices for $a$.

Then there are $n$ choices for $f(2), f(3), \ldots, f(n)$.

However, we have fixed $f(1)$ and $f(a)$ already, so we have $n^{n-2}$ choices for the remaining $n-2$ values of $f$.

So the number of such functions is $(n-1) n^{n-2}$.

The total number of functions $f: S_n \to S_n$ is $n^n$.

Then, we have $f(f(x)) = 1$.

The number of such functions is:

If $x=1$, $f(f(1)) = 1$. Then $f(1) = 1$. There are $n^{n-1}$ such functions.

If $x \neq 1$, let $f(x) = y$. We want $f(y) = 1$.

If $y=1$, then $f(x)=1$, so $f(1)=1$. This case is covered in the first case.

If $y \ne 1$, then we must have $f(x) = a$ and $f(a) = 1$, where $a \neq 1$.

The number of functions with $f(1)=1$ is $n^{n-1}$.

If $f(1)=a \neq 1$, then $f(a)=1$. The number of such functions is $(n-1) \cdot n^{n-2}$.

The total number of functions is $n^n$.

The total number of functions $f: S_n \to S_n$ is $n^n$. The number of functions such that $f(1)=1$ is $n^{n-1}$.

The probability that $f(1)=1$ is $\frac{n^{n-1}}{n^n} = \frac{1}{n}$.

Let $X_n$ be the number of such functions.

Let $f(1) = a$. Then $f(f(1)) = f(a) = 1$.

If $a=1$, then $f(1)=1$. The remaining $n-1$ values can be any value, so there are $n^{n-1}$ such functions.

If $a \neq 1$, then we have $f(1) = a \neq 1$, and $f(a) = 1$. There are $n-1$ choices for $a$.

For the remaining $n-2$ elements, we can assign any value in $S_n$. So there are $n^{n-2}$ such functions.

Thus there are $(n-1) n^{n-2}$ such functions.

Total number of functions is $n^{n-1} + (n-1) n^{n-2} = n^{n-2}(n + n – 1) = n^{n-2}(2n-1)$.

We are interested in the probability that $f(f(x)) = 1$.

Consider $x=1$. Then $f(f(1)) = 1$.

Let $f(1) = a$. Then $f(a)=1$.

If $a=1$, then $f(1) = 1$, and $f(f(1)) = f(1) = 1$. There are $n^{n-1}$ such functions.

If $a \neq 1$, then $f(1)=a$ and $f(a)=1$. There are $n-1$ choices for $a$. For other values $k \neq 1, a$, we have $n$ choices for $f(k)$. There are $(n-1)n^{n-2}$ such functions.

Total number of functions with $f(f(1)) = 1$ is $n^{n-1} + (n-1)n^{n-2} = (n+n-1)n^{n-2} = (2n-1)n^{n-2}$.

Probability that $f(f(1))=1$ is $\frac{(2n-1)n^{n-2}}{n^n} = \frac{2n-1}{n^2} = \frac{2}{n} – \frac{1}{n^2}$.

As $n \to \infty$, $p_n = \frac{2}{n} – \frac{1}{n^2} \to 0$.

Final Answer: The final answer is $\boxed{0}$

解除保险合同申请书

本内容由MSchen收集整理,如果侵犯您的权利,请联系删除(点这里联系),如若转载,请注明出处:http://www.xchxzm.com/74376.html

Like (0)
MSchenMSchen

相关推荐

  • 在酒楼上读后感(3篇)

    “在酒楼上读后感”是指读完《在酒楼上》这篇文章后所产生的感想或体会。以下是有关于在酒楼上读后感的有关内容,欢迎大家阅读! 在酒楼上读后感1 今天再次读了鲁迅先生的《在酒楼上》,总觉…

    2024-07-26
    040
  • 强制申请书模板

    模板一:强制执行民事判决申请书 申请人:[姓名/名称],[性别],[出生年月],[民族],[职业/职务],住址:[详细地址],身份证号码:[号码],联系电话:[电话号码]。 (如申…

    2025-04-25
    020
  • 转正申请书1000字

    尊敬的领导: 您好! 我于XXXX年XX月XX日正式加入公司,担任[您的部门]部门的[您的职位]一职。时光飞逝,不知不觉中,为期[X个月,例如:三个月]的试用期即将结束。此刻,我怀…

    2025-04-16
    020
  • 教师工作调动申请书(18篇)

    教师工作调动申请书是教师在职场上实现个人发展的重要途径之一。它不仅是一份表达对新岗位的热情和期望,更是展示自身专业能力和职业素养的机会。一份精心准备的调动申请书,会让雇主对你更加了…

    2024-08-13
    090
  • 申请内退申请书怎么写

    样本一: 尊敬的[公司名称/部门领导]: 您好! 我叫[姓名],是[部门]的[职务],工号是[工号]。自[入职年份]年进入公司以来,一直工作至今,在[岗位]上兢兢业业,努力完成各项…

    2025-03-03
    040
  • 贫困申请书1000字左右范文(13篇)

    贫困申请书是一种正式的文件,用于申请政府或其他机构提供经济援助。它通常包含申请人的个人和家庭信息、收入来源、贫困原因以及任何可以证明申请人贫困的相关证据。一个1000字左右的贫困申…

    申请书 2024-01-09
    020
  • 提前终止合同申请书

    [对方公司名称/个人姓名]: 本人/本公司 [申请人姓名/公司名称],身份证号/统一社会信用代码 [申请人证件号码/公司代码],现就双方于 [合同签订日期] 签订的《[合同名称]》…

    2025-04-20
    020
  • 退团申请书怎么写 退团申请书4篇

    “退团申请书”指的是成员退出某个团体时所写的申请文书。以下是有关于退团申请书的有关内容,欢迎大家阅读! 退团申请书1 尊敬的社团联合委员会培训部部长,主席团,指导老师: 首先,非常…

    2023-11-21
    0270

发表回复

Please Login to Comment