解除保险合同申请书

样本一:简洁版

解除保险合同申请书

致:__________保险公司

申请人:__________(投保人姓名/名称)

身份证号码/统一社会信用代码:___________

联系电话:__________

通讯地址:__________

保单号码:__________

险种名称:__________

保险期间:__________至__________

申请解除保险合同原因:__________(简要说明原因,例如:个人经济原因、不再需要此保障等)

本人/本单位已充分了解解除保险合同可能产生的后果,包括但不限于可能损失部分已缴纳保费、无法享受保险保障等。现申请解除上述保险合同,请贵公司依法依规办理相关手续。

退还保险费方式(请选择并填写):

□ 银行转账:

开户银行:__________

开户名:__________

银行账号:__________

□ 现金(仅限特定情况):

申请人/授权代表签字(盖章):__________

日期:__________年__________月__________日


样本二:详细版(含犹豫期说明)

解除保险合同申请书

致:__________保险公司

申请人(投保人)信息:

姓名/名称:__________

身份证号码/统一社会信用代码:__________

联系电话:__________

通讯地址:__________

电子邮箱:__________

被保险人信息(如与投保人不同):

姓名:__________

身份证号码:__________

与投保人关系:__________

保单信息:

保单号码:__________

险种名称:__________

保险期间:__________至__________

缴费方式:__________(趸交/期交,期交请注明缴费频率)

已缴保费:__________元

解除保险合同原因:

(请详细说明解除合同的具体原因,包括但不限于以下情况:个人经济状况变化、对保险产品理解有误、发现更适合的保险产品、不再需要此项保障、保险公司服务问题等。请尽可能提供详细信息,以便保险公司更好地了解情况。)

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ and \begin{CJK}{UTF8}{mj1.5 We have_ Each element of the set $(S_n)$ is equally likely to be chosen. Let the probability that $f(f(x)) = 1$ be $p_n$. What is the limit as $n$ approaches infinity of $p_n$?

Let $S_n = {1, 2, \ldots, n}$. We are given that the function $f$ maps $S_n$ into $S_n$. The elements of $S_n$ are ${1, 2, \ldots, n}$.

Since each element of $S_n$ is equally likely to be chosen, we are choosing $f$ uniformly randomly.

We are looking for the probability that $f(f(x)) = 1$.

This can happen if and only if we have one of the following cases:

\begin{itemize}

\item $f(x) = 1$, then $f(f(x)) = f(1)$. So we require $f(1) = 1$.

\item $f(x) = x \neq 1$. This means we need $f(x) = f(x)$ for some $x \neq 1$, and we require $x=1$, which is a contradiction.

\end{itemize}

Let $f(1) = a$. Then $f(f(1)) = f(a) = 1$.

If $a = 1$, then we have $f(1) = 1$.

The number of functions $f$ where $f(1) = 1$ is $n^{n-1}$.

If $a \neq 1$, then we have $f(1) = a$ and $f(a) = 1$.

There are $n-1$ choices for $a$.

Then there are $n$ choices for $f(2), f(3), \ldots, f(n)$.

However, we have fixed $f(1)$ and $f(a)$ already, so we have $n^{n-2}$ choices for the remaining $n-2$ values of $f$.

So the number of such functions is $(n-1) n^{n-2}$.

The total number of functions $f: S_n \to S_n$ is $n^n$.

Then, we have $f(f(x)) = 1$.

The number of such functions is:

If $x=1$, $f(f(1)) = 1$. Then $f(1) = 1$. There are $n^{n-1}$ such functions.

If $x \neq 1$, let $f(x) = y$. We want $f(y) = 1$.

If $y=1$, then $f(x)=1$, so $f(1)=1$. This case is covered in the first case.

If $y \ne 1$, then we must have $f(x) = a$ and $f(a) = 1$, where $a \neq 1$.

The number of functions with $f(1)=1$ is $n^{n-1}$.

If $f(1)=a \neq 1$, then $f(a)=1$. The number of such functions is $(n-1) \cdot n^{n-2}$.

The total number of functions is $n^n$.

The total number of functions $f: S_n \to S_n$ is $n^n$. The number of functions such that $f(1)=1$ is $n^{n-1}$.

The probability that $f(1)=1$ is $\frac{n^{n-1}}{n^n} = \frac{1}{n}$.

Let $X_n$ be the number of such functions.

Let $f(1) = a$. Then $f(f(1)) = f(a) = 1$.

If $a=1$, then $f(1)=1$. The remaining $n-1$ values can be any value, so there are $n^{n-1}$ such functions.

If $a \neq 1$, then we have $f(1) = a \neq 1$, and $f(a) = 1$. There are $n-1$ choices for $a$.

For the remaining $n-2$ elements, we can assign any value in $S_n$. So there are $n^{n-2}$ such functions.

Thus there are $(n-1) n^{n-2}$ such functions.

Total number of functions is $n^{n-1} + (n-1) n^{n-2} = n^{n-2}(n + n – 1) = n^{n-2}(2n-1)$.

We are interested in the probability that $f(f(x)) = 1$.

Consider $x=1$. Then $f(f(1)) = 1$.

Let $f(1) = a$. Then $f(a)=1$.

If $a=1$, then $f(1) = 1$, and $f(f(1)) = f(1) = 1$. There are $n^{n-1}$ such functions.

If $a \neq 1$, then $f(1)=a$ and $f(a)=1$. There are $n-1$ choices for $a$. For other values $k \neq 1, a$, we have $n$ choices for $f(k)$. There are $(n-1)n^{n-2}$ such functions.

Total number of functions with $f(f(1)) = 1$ is $n^{n-1} + (n-1)n^{n-2} = (n+n-1)n^{n-2} = (2n-1)n^{n-2}$.

Probability that $f(f(1))=1$ is $\frac{(2n-1)n^{n-2}}{n^n} = \frac{2n-1}{n^2} = \frac{2}{n} – \frac{1}{n^2}$.

As $n \to \infty$, $p_n = \frac{2}{n} – \frac{1}{n^2} \to 0$.

Final Answer: The final answer is $\boxed{0}$

解除保险合同申请书

本内容由MSchen收集整理,如果侵犯您的权利,请联系删除(点这里联系),如若转载,请注明出处:http://www.xchxzm.com/74376.html

Like (0)
MSchenMSchen

相关推荐

  • 医疗过错鉴定申请书

    申请人:[患者姓名/患者家属姓名],性别:[男/女],民族:[汉/其他],出生日期:[XXXX年XX月XX日],身份证号码:[XXXXXXXXXXXXXXXXXX],联系电话:[X…

    2025-06-05
    020
  • 2024撤销处分申请书打架范文(11篇)

    撤销处分申请书打架这个词的意思是因争执、冲突而动手进行攻击或还击他人的行为。以下是有关于撤销处分申请书打架的有关内容,欢迎大家阅读! 撤销处分申请书打架1 尊敬的校领导、系领导、班…

    2024-02-05
    0130
  • 住房补贴申请书模板 住房补贴申请书(7篇)

    住房补贴申请书是指**申请住房补贴的书面文件**。以下是有关于住房补贴申请书的有关内容,欢迎大家阅读! 住房补贴申请书1 您好!在您的领导下,全所职工的努力下,钢研所的搬迁工作已接…

    2024-01-31
    090
  • 2024中国少年先锋队申请书(范文5篇)

    “中国少年先锋队申请书”是指:在中国少年先锋队内部,队员向组织表达意愿、请求批准入队时所使用的一种文书。一般说来,申请书是为了表达申请某一项工作或活动的意愿,并希望得到批准的一种书…

    2024-01-22
    0170
  • 二期留队申请书

    (模板一:偏向纪律部队/军事单位风格) 尊敬的各位领导: 本人XXX,系XX单位/部门/连队XX(职务/身份),自XXXX年XX月加入本单位以来,已圆满完成为期XX(时间)的第一期…

    2025-04-26
    020
  • 变更姓名申请书(3篇)

    想要改变姓名?不妨来看看变更姓名申请书的范文,让您轻松完成姓名变更手续。无论是因为结婚、离婚还是其他个人原因,填写一份规范的申请书将为您节省时间和精力。让我们一起来看看如何撰写一份…

    2024-12-23
    060
  • 诉前财产保全申请书(16篇)

    诉前财产保全申请书,是在诉讼程序正式开始之前,申请人为了保护自己的合法权益而提出的一种法律请求。这份申请书通常包括财产保全的原因、证据、请求和相关法律依据等内容,是保护财产权益的有…

    2024-08-25
    0120
  • 应征公民入伍申请书

    样本/模板 1 尊敬的______部队首长: 我叫__,性别_,族,年月日出生,籍贯省市县(区),身份证号码:___,__文化程度,____(政治面貌,如:共青团员/中共党员/群众…

    2025-02-22
    030

发表回复

Please Login to Comment