解除保险合同申请书

样本一:简洁版

解除保险合同申请书

致:__________保险公司

申请人:__________(投保人姓名/名称)

身份证号码/统一社会信用代码:___________

联系电话:__________

通讯地址:__________

保单号码:__________

险种名称:__________

保险期间:__________至__________

申请解除保险合同原因:__________(简要说明原因,例如:个人经济原因、不再需要此保障等)

本人/本单位已充分了解解除保险合同可能产生的后果,包括但不限于可能损失部分已缴纳保费、无法享受保险保障等。现申请解除上述保险合同,请贵公司依法依规办理相关手续。

退还保险费方式(请选择并填写):

□ 银行转账:

开户银行:__________

开户名:__________

银行账号:__________

□ 现金(仅限特定情况):

申请人/授权代表签字(盖章):__________

日期:__________年__________月__________日


样本二:详细版(含犹豫期说明)

解除保险合同申请书

致:__________保险公司

申请人(投保人)信息:

姓名/名称:__________

身份证号码/统一社会信用代码:__________

联系电话:__________

通讯地址:__________

电子邮箱:__________

被保险人信息(如与投保人不同):

姓名:__________

身份证号码:__________

与投保人关系:__________

保单信息:

保单号码:__________

险种名称:__________

保险期间:__________至__________

缴费方式:__________(趸交/期交,期交请注明缴费频率)

已缴保费:__________元

解除保险合同原因:

(请详细说明解除合同的具体原因,包括但不限于以下情况:个人经济状况变化、对保险产品理解有误、发现更适合的保险产品、不再需要此项保障、保险公司服务问题等。请尽可能提供详细信息,以便保险公司更好地了解情况。)

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ and \begin{CJK}{UTF8}{mj1.5 We have_ Each element of the set $(S_n)$ is equally likely to be chosen. Let the probability that $f(f(x)) = 1$ be $p_n$. What is the limit as $n$ approaches infinity of $p_n$?

Let $S_n = {1, 2, \ldots, n}$. We are given that the function $f$ maps $S_n$ into $S_n$. The elements of $S_n$ are ${1, 2, \ldots, n}$.

Since each element of $S_n$ is equally likely to be chosen, we are choosing $f$ uniformly randomly.

We are looking for the probability that $f(f(x)) = 1$.

This can happen if and only if we have one of the following cases:

\begin{itemize}

\item $f(x) = 1$, then $f(f(x)) = f(1)$. So we require $f(1) = 1$.

\item $f(x) = x \neq 1$. This means we need $f(x) = f(x)$ for some $x \neq 1$, and we require $x=1$, which is a contradiction.

\end{itemize}

Let $f(1) = a$. Then $f(f(1)) = f(a) = 1$.

If $a = 1$, then we have $f(1) = 1$.

The number of functions $f$ where $f(1) = 1$ is $n^{n-1}$.

If $a \neq 1$, then we have $f(1) = a$ and $f(a) = 1$.

There are $n-1$ choices for $a$.

Then there are $n$ choices for $f(2), f(3), \ldots, f(n)$.

However, we have fixed $f(1)$ and $f(a)$ already, so we have $n^{n-2}$ choices for the remaining $n-2$ values of $f$.

So the number of such functions is $(n-1) n^{n-2}$.

The total number of functions $f: S_n \to S_n$ is $n^n$.

Then, we have $f(f(x)) = 1$.

The number of such functions is:

If $x=1$, $f(f(1)) = 1$. Then $f(1) = 1$. There are $n^{n-1}$ such functions.

If $x \neq 1$, let $f(x) = y$. We want $f(y) = 1$.

If $y=1$, then $f(x)=1$, so $f(1)=1$. This case is covered in the first case.

If $y \ne 1$, then we must have $f(x) = a$ and $f(a) = 1$, where $a \neq 1$.

The number of functions with $f(1)=1$ is $n^{n-1}$.

If $f(1)=a \neq 1$, then $f(a)=1$. The number of such functions is $(n-1) \cdot n^{n-2}$.

The total number of functions is $n^n$.

The total number of functions $f: S_n \to S_n$ is $n^n$. The number of functions such that $f(1)=1$ is $n^{n-1}$.

The probability that $f(1)=1$ is $\frac{n^{n-1}}{n^n} = \frac{1}{n}$.

Let $X_n$ be the number of such functions.

Let $f(1) = a$. Then $f(f(1)) = f(a) = 1$.

If $a=1$, then $f(1)=1$. The remaining $n-1$ values can be any value, so there are $n^{n-1}$ such functions.

If $a \neq 1$, then we have $f(1) = a \neq 1$, and $f(a) = 1$. There are $n-1$ choices for $a$.

For the remaining $n-2$ elements, we can assign any value in $S_n$. So there are $n^{n-2}$ such functions.

Thus there are $(n-1) n^{n-2}$ such functions.

Total number of functions is $n^{n-1} + (n-1) n^{n-2} = n^{n-2}(n + n – 1) = n^{n-2}(2n-1)$.

We are interested in the probability that $f(f(x)) = 1$.

Consider $x=1$. Then $f(f(1)) = 1$.

Let $f(1) = a$. Then $f(a)=1$.

If $a=1$, then $f(1) = 1$, and $f(f(1)) = f(1) = 1$. There are $n^{n-1}$ such functions.

If $a \neq 1$, then $f(1)=a$ and $f(a)=1$. There are $n-1$ choices for $a$. For other values $k \neq 1, a$, we have $n$ choices for $f(k)$. There are $(n-1)n^{n-2}$ such functions.

Total number of functions with $f(f(1)) = 1$ is $n^{n-1} + (n-1)n^{n-2} = (n+n-1)n^{n-2} = (2n-1)n^{n-2}$.

Probability that $f(f(1))=1$ is $\frac{(2n-1)n^{n-2}}{n^n} = \frac{2n-1}{n^2} = \frac{2}{n} – \frac{1}{n^2}$.

As $n \to \infty$, $p_n = \frac{2}{n} – \frac{1}{n^2} \to 0$.

Final Answer: The final answer is $\boxed{0}$

解除保险合同申请书

本内容由MSchen收集整理,如果侵犯您的权利,请联系删除(点这里联系),如若转载,请注明出处:http://www.xchxzm.com/74376.html

Like (0)
MSchenMSchen

相关推荐

  • 申请迁户口的申请书怎么写

    尊敬的[目标迁入地]公安分局/派出所: 您好! 本人[申请人姓名],性别[男/女],身份证号:[申请人身份证号码],现户籍地址为:[申请人现户籍详细地址,精确到省、市、区/县、街道…

    2025-12-24
    020
  • 退履约保证金申请书

    致:[项目业主/合同甲方名称] 申请单位:[贵公司名称] 统一社会信用代码:[贵公司统一社会信用代码] 通讯地址:[贵公司通讯地址] 联系人:[联系人姓名] 联系电话:[联系电话]…

    2025-12-20
    020
  • 部队请战申请书400

    敬爱的军区党委、首长: 我们是中国人民解放军某部全体官兵,怀着对党和人民的无限忠诚,对祖国和民族的深沉热爱,特此联名呈上这份请战申请书。 当前,国际形势复杂多变,霸权主义和强权政治…

    2025-12-20
    030
  • 部队驾驶集训申请书

    尊敬的旅(团)首长并政治处首长: 敬爱的旅(团)首长,我谨向上级领导申请参加本年度的部队驾驶集训。 我是列兵李明,现任陆军某部通信连通信员。自入伍以来,我始终以一名合格军人的标准严…

    2025-12-20
    020
  • 自愿申请补课的申请书

    尊敬的学校领导、各位老师: 您好! 我写此申请书,是怀着一份对知识的渴求和对学业进步的强烈愿望,郑重申请自愿参加学校组织的课后补习班。我深知,在当前的学习阶段,个人努力固然重要,但…

    2025-12-20
    030
  • 更换执行法官申请书

    申请人: [姓名/公司名称],[性别/统一社会信用代码],[民族],[出生日期],[身份证号/注册号],[住址/住所地],[联系电话]。 法定代表人/委托代理人: [姓名],[性别…

    2025-12-20
    030
  • 请假申请书怎样写

    请假申请书是员工向单位请示休假的重要书面文件,它不仅体现了员工对单位规章制度的尊重,也是确保工作顺利交接、避免工作中断的关键。一份规范、清晰、专业的请假申请书,能有效传达请假意图,…

    2025-12-19
    020
  • 申请医疗鉴定申请书

    申请医疗鉴定申请书 申请人: 张某,男,身份证号码:[身份证号码],住址:[住址],联系电话:[联系电话]。 被申请人: 1. [医院名称],住所地:[医院地址],法定代表人:[法…

    2025-12-19
    020

发表回复

Please Login to Comment